computing

Implementation of Tower Isolation Cut

Under:

Originally posted 11 October 2005

Previously we had calibrated the BEMC using data from all triggers. We now have enough data to restrict ourselves to minimum-bias triggers. Additionally, we have implemented a cut that requires the pedestal-subtracted ADC value of neighboring towers to be less than twice the width of the pedestal. This cut does an excellent job of removing background, especially in the high-eta region:

StEmcAssociationMaker

Under:

Introduction

To treat many-particle events (pp and AuAu), we need to know which particle generated which cluster/point before evaluating the reconstructed clusters and points.  StEmcAssoc

Transfers to/from Birmingham

Under:
Introduction
Transfers where either the source or target are on the Birmingham cluster. I am keeping a log of these as they come up. I don't do them too often so it will take a while to accumulate enough data points to discern any patterns…

Embedding

Under:

Update:  New B/EEMC embedding framework from Wei-Ming Zhang currently in peer review

Calibrations Database

Under:
All calibration information is stored in the STAR database.  We have the following tables for BEMC calibrations:
  • For the BTOW and BPRS detectors:
    • St_emcCalib - this table contains absolute gain information for each channel
    • St_emcPed - this table contains pedestal values for each channel
    • St_emcGain - this table contains a gain correction factor vs. time for each channel (not currently used)

Trigger Database

Under:
This database stores all BEMC trigger information such as trigger status, masks and pedestals used to obtain the high tower and patch sum information.  The database is updated online while taking data.  We have the following table formats:

Database

Under:

These pages describe how to use the BEMC database.  There is a browser-based tool that you can use to view any and all BEMC tables available at:

Run 4 BTOW Calibration

Under:

Introduction:

The recalibration of the BEMC towers for Run 4 includes the following improvements:

Run 5 BTOW Calibration

Under:

Introduction

The final BTOW calibration for Run 5 offers the following improvements over previous database calibrations:

Single Spin Asymmetries by Fill

Away-side only

BJP1 (hardware & software & geometric) requirement, only use pions with dR > 1.5

Action Items

Under:

Immediate action items:

Data Management

Under:

The data management section will have information on data transfer and development/consolidation of tools used in STAR for Grid data transfer.

 

Run 6 BTOW Calibration

Under:

Introduction

This is not the final calibration for the 2006 data, but it's a big improvement over what's currently in the DB.  It uses MIPs to set relative gains for the towers in an

Using your Grid CERT to sign or encrypt Emails

Under:
Apart from allowing you to access the Grid, an SSL Client Certificate is imported into the Web browser from which you requested your Grid certificate. This certificate could be used to digtially sign or encrypt Email. For the second, you will need te certificate from the correspondign partner in order to encrypt Emails. To make use of it, folow the below guidance.

GridLeak: Gain Study

Under:
In February 2005, Blair took some special runs with altered TPC gains so we could study the effect on the GridLeak distortion.

GridLeak Studies

Under:

Datasets

Under:

Here we present information about our datasets.

Adding a New Detector to STAR

Under:

The STAR Geometry Model

R&D Tags

Under:

The R&D conducted for the inner tracking upgrade required that a few specialized geometry tags be created. For a complete set of geometry tags, please visit the STAR Geometry in simulation & reconstruction page.

2005

Under:
Description
Dataset name
Statistics, thousands
Status
Moved to HPSS
Comment
Herwig 6.507, Y2004Y
rcf1259
225
Finished
Yes
  7Gev<Pt<9Gev
Herwig 6.507, Y2004Y
rcf1258
248
Finished
Yes
  5Gev<Pt<7Gev
Herwig 6.507, Y2004Y
rcf1257
367
Finished
Yes
  4Gev<Pt<5Gev
Herwig 6.507, Y2004Y
rcf1256
424
Finished
Yes
  3Gev<Pt<4Gev
Herwig 6.507, Y2004Y
rcf1255
407
Finished
Yes
  2Gev<Pt<3Gev
Herwig 6.507, Y2004Y
rcf1254
225
Finished
Yes
  35Gev<Pt<100Gev
Herwig 6.507, Y2004Y
rcf1253
263
Finished
Yes
  25Gev<Pt<35Gev
Herwig 6.507, Y2004Y
rcf1252
263
Finished
Yes
  15Gev<Pt<25Gev
Herwig 6.507, Y2004Y
rcf1251
225
Finished
Yes
  11Gev<Pt<15Gev
Herwig 6.507, Y2004Y
rcf1250
300
Finished
Yes
  9Gev<Pt<11Gev
Hijing 1.382 AuAu 200 GeV minbias, 0< b < 20fm
rcf1249
24
Finished
Yes
Tracking,new SVT geo, diamond: 60, +-30cm, Y2005D
Herwig 6.507, Y2004Y
rcf1248
15
Finished
Yes
35Gev<Pt<45Gev
Herwig 6.507, Y2004Y
rcf1247
25
Finished
Yes
25Gev<Pt<35Gev
Herwig 6.507, Y2004Y
rcf1246
50
Finished
Yes
15Gev<Pt<25Gev
Herwig 6.507, Y2004Y
rcf1245
100
Finished
Yes
11Gev<Pt<15Gev
Herwig 6.507, Y2004Y
rcf1244
200
Finished
Yes
  9Gev<Pt<11Gev
CuCu 62.4 Gev, Y2005C
rcf1243
5
Finished
No
same as 1242+ keep Low Energy Tracks
CuCu 62.4 Gev, Y2005C
rcf1242
5
Finished
No
SVT tracking test, 10 keV e/m process cut (cf. rcf1237)
10 J/Psi, Y2005X, SVT out
rcf1241
30
Finished
No
Study of the SVT material effect
10 J/Psi, Y2005X, SVT in
rcf1240
30
Finished
No
Study of the SVT material effect
100 pi0, Y2005X, SVT out
rcf1239
18
Finished
No
Study of the SVT material effect
100 pi0, Y2005X, SVT in
rcf1238
20
Finished
No
Study of the SVT material effect
CuCu 62.4 Gev, Y2005C
rcf1237
5
Finished
No
SVT tracking test, pilot run
Herwig 6.507, Y2004Y
rcf1236
8
Finished
No
Test run for initial comparison with Pythia, 5Gev<Pt<7Gev
Pythia, Y2004Y
rcf1235
100
Finished
No
MSEL=2, min bias
Pythia, Y2004Y
rcf1234
90
Finished
No
MSEL=0,CKIN(3)=0,MSUB=91,92,93,94,95
Pythia, Y2004Y, sp.2
(CDF tune A)
rcf1233
308
Finished
Yes
4<Pt<5, MSEL=1, GHEISHA
Pythia, Y2004Y, sp.2
(CDF tune A)
rcf1232
400
Finished
Yes
3<Pt<4, MSEL=1, GHEISHA
Pythia, Y2004Y, sp.2
(CDF tune A)
rcf1231
504
Finished
Yes
2<Pt<3, MSEL=1, GHEISHA
Pythia, Y2004Y, sp.2
(CDF tune A)
rcf1230
104
Finished
Yes
35<Pt, MSEL=1, GHEISHA
Pythia, Y2004Y, sp.2
(CDF tune A)
rcf1229
208
Finished
Yes
25<Pt<35, MSEL=1, GHEISHA
Pythia, Y2004Y, sp.2
(CDF tune A)
rcf1228
216
Finished
Yes
15<Pt<25, MSEL=1, GHEISHA
Pythia, Y2004Y, sp.2
(CDF tune A)
rcf1227
216
Finished
Yes
11<Pt<15, MSEL=1, GHEISHA
Pythia, Y2004Y, sp.2
(CDF tune A)
rcf1226
216
Finished
Yes
9<Pt<11, MSEL=1, GHEISHA
Pythia, Y2004Y, sp.2
(CDF tune A)
rcf1225
216
Finished
Yes
7<Pt<9, MSEL=1, GHEISHA
Pythia, Y2004Y, sp.2
(CDF tune A)
rcf1224
216
Finished
Yes
5<Pt<7, MSEL=1, GHEISHA
Pythia special tune2
Y2004Y, GCALOR
rcf1223
100
Finished
Yes
4<Pt<5, GCALOR
Pythia special tune2
Y2004Y, GHEISHA
rcf1222
100
Finished
Yes
4<Pt<5, GHEISHA
Pythia special run 3
Y2004C
rcf1221
100
Finished
Yes
ENER 200.0, MSEL 2, MSTP (51)=7,
MSTP (81)=1, MSTP (82)=1, PARP (82)=1.9,
PARP (83)=0.5, PARP (84)=0.2,
PARP (85)=0.33, PARP (86)=0.66,
PARP (89)=1000, PARP (90)=0.16,
PARP (91)=1.0, PARP (67)=1.0
Pythia special run 2
Y2004C
(CDF tune A)
rcf1220
100
Finished
Yes

ENER 200.0, MSEL 2, MSTP (51)=7,
MSTP (81)=1, MSTP (82)=4, PARP (82)=2.0,
PARP (83)=0.5, PARP (84)=0.4,
PARP (85)=0.9, PARP (86)=0.95,
PARP (89)=1800, PARP (90)=0.25,
PARP (91)=1.0, PARP (67)=4.0