STAR 2013 W AL Paper PWGC Preview

11 / 17 / 17

Devika Gunarathne¹, Amani Kraishan¹, Ernst Sichtermann², Bernd Surrow¹, Qinghua Xu³, and Jinlong Zhang^{2*}

> ¹Temple University ²Lawrence Berkeley Laboratory ³Shandong University

Introduction

- Proposed Abstract
- Proposed Figures
- Proposed Table
- Proposed Summary

- STAR PWG : Spin
- Title : Measurement of the longitudinal singlespin asymmetry for W+ and W- boson production in polarized proton-proton collisions at RHIC
- PAs : Devika Gunarathne, Amani Kraishan, Ernst Sichtermann, Bernd Surrow, Qinghua Xu, and Jinlong Zhang
- Target Journal : Physical Review D Rapid Communications

Introduction II - Support Materials

- Paper Proposal Page : https://drupal.star.bnl.gov/STAR/pwg/spinanalysisstatushtml/w-2013-analysis-meeting/run-2013-w-al-paper-proposal-webpage
- Analysis Note : <u>https://drupal.star.bnl.gov/STAR/system/files/</u> analysisnote 6.pdf
- Preliminary Results Release:
 - INPC 2016, SPIN 2016, DIS 2017
- Presentations:
 - <u>https://drupal.star.bnl.gov/STAR/system/files/</u> <u>CollaborationMeeting_run13WAL.pdf</u>
 - <u>https://drupal.star.bnl.gov/STAR/system/files/09-06-16-pwg-Update-BS.v2_0.pdf</u>
 - <u>https://drupal.star.bnl.gov/STAR/system/files/spin_mar13_v3.pdf</u>

Introduction III - Physics Goal

Measurement of the longitudinal single-spin asymmetry for W^+ and W^- boson production in polarized proton-proton collisions at RHIC

STAR author list

(Dated: October 5, 2017, version 1.0)

We report new measurements of single- and double-spin asymmetries for W^+ and W^- boson production in polarized proton+proton collisions at $\sqrt{s} = 510$ GeV as a function of the decay lepton pseudorapidity. These new measurements based on 256 pb⁻¹ of data are combined with previous results based on 86 pb⁻¹. The combined results are compared to theoretical predictions constrained by polarized deep-inelastic scattering measurements and prior results in polarized p+p collisions suggesting an asymmetry in the helicity distributions of anti-u and anti-d quarks for 0.05 < x < 0.2.

Figure 1. \$E_T^e\$ distributions of \$W^-\$ (top) and \$W^+\$ (bottom) candidate events (black), background contributions, and sum of backgrounds and \$W \rightarrow e\nu\$ MC signal (red-dashed) in the BEMC region.

Figure 2. Signed \$p_{T}\$-balance distributions for \$W^+\$ (*right*) and \$W^-\$ (*left*) candidate events (black), background contributions, and sum of backgrounds and \$W \rightarrow e\nu\$ MC signal (red-dashed) in the EEMC region.

Figure 3. Distributions of the product of the TPC-reconstructed charge sign and \$E_T/p_T\$ in the BEMC region (left) and the EEMC region (right). The electron (blue) and positron (red) candidate events have been fitted with double-Gaussian distributions. The excluded regions are marked by hatched shades.

Figure 4. Longitudinal single-spin asymmetry, \$A_L\$, for \$W^\pm\$ production as a function of the lepton pseudorapidity, \$\eta_e\$, separately for the 2011+2012 (black squares) and 2013 (red circles) STAR data samples for 25 \$< E_T^e <\$ 50GeV

Figure 5. Longitudinal single-spin asymmetry, \$A_L\$, for \$W^\pm\$ production as a function of the lepton pseudorapidity, \$\eta_e\$, for the combined 2011+2012 and 2013 (red circles) STAR data samples for 25 \$< E_T^e <\$ 50 GeV in comparison to theory predictions (See text for details)

Proposed Table

	$\langle \eta_e \rangle$ –	$A_L \ (\pm sta$	$ut \pm syst$)	$A_{LL} \ (\pm stat \pm syst)$		
		2013	2011-2013	2013	2011-2013	
	-1.24	$-0.494 \pm 0.180 \pm 0.015$	$-0.314 \pm 0.144 \pm 0.015$			
	-0.71	$-0.267 \pm 0.036 \pm 0.012$	$-0.259 \pm 0.030 \pm 0.012$	_	_	
W^+	-0.24	$-0.337 \pm 0.028 \pm 0.006$	$-0.339 \pm 0.024 \pm 0.006$			
VV	0.25	$-0.422 \pm 0.027 \pm 0.004$	$-0.424 \pm 0.023 \pm 0.004$	$0.032 \pm 0.050 \pm 0.025$	$0.010 \pm 0.043 \pm 0.025$	
	0.72	$-0.582 \pm 0.035 \pm 0.014$	$-0.551 \pm 0.030 \pm 0.014$	$0.063 \pm 0.065 \pm 0.025$	$0.083 \pm 0.055 \pm 0.025$	
	1.24	$-0.517 \pm 0.181 \pm 0.019$	$-0.571 \pm 0.139 \pm 0.019$	$-0.053 \pm 0.328 \pm 0.060$	$-0.001 \pm 0.260 \pm 0.060$	
W^{-}	-1.27	$0.350 \pm 0.184 \pm 0.003$	$0.292 \pm 0.146 \pm 0.003$			
	-0.74	$0.267 \pm 0.062 \pm 0.004$	$0.261 \pm 0.053 \pm 0.004$	—	_	
	-0.27	$0.304 \pm 0.069 \pm 0.001$	$0.297 \pm 0.057 \pm 0.001$			
	0.26	$0.251 \pm 0.069 \pm 0.002$	$0.236 \pm 0.057 \pm 0.002$	$0.086 \pm 0.124 \pm 0.014$	$-0.003 \pm 0.104 \pm 0.014$	
	0.74	$0.387 \pm 0.061 \pm 0.004$	$0.388 \pm 0.052 \pm 0.004$	$-0.126 \pm 0.111 \pm 0.014$	$-0.046 \pm 0.095 \pm 0.014$	
	1.27	$0.403 \pm 0.184 \pm 0.003$	$0.324 \pm 0.148 \pm 0.003$	$-0.132 \pm 0.331 \pm 0.044$	$-0.146 \pm 0.260 \pm 0.044$	

TABLE I. Longitudinal single- and double-spin asymmetries, A_L and A_{LL} for W^{\pm} production obtained from STAR 2013 data sample, as well as the combination with 2011+2012 results. The longitudinal single-spin asymmetry is measured over six pseudorapidity bins. The longitudinal double-spin asymmetry is measured over the same bins combining bins belonging to the same absolute value.

 Z boson A_L is also calculated. We plan to include the value either in the table or in the text, or in both. In summary, we report a new STAR measurement of the longitudinal single-spin asymmetries, A_L , for W^+ and W^- , boson production in polarized proton+proton collisions at s^{-1} , S^{-1} GeV. The production of W bosons in these collisions and their subsequent leptonic decay is a unique process to delineate the quark and anti-quark polarizations in the polarized proton by flavor. The data, combined with previously published STAR results, show a significant preference for an up anti-quark helicity distribution that is larger than the down antiquark helicity distribution in the fractional momentum range 0.05 \$< x <\$ 0.2 at a scale Q\$^2\$ = 10 GeV\$^2\$, opposite to the spin-averaged quark-sea distributions.

BackUp

Data and Simulation

Data

	Run 13 Barrel Period 1	Run 13 Barrel Period 2	Run 13 Endcap Period 1	Run 13 Endcap Period 2	Run 12 (Barral + Endcap)	Run 11 (Barral + Endcap)
Production	P16ig	P16ig	P16ig	P16ig	P13ib	P11id
Int. Luminosity (QA'd)	124.16 pb ⁻¹	121.28 pb ⁻¹	109 pb-1	100 pb ⁻¹	77.4 pb ⁻¹	9.4 pb ⁻¹
Number of Runs	925	712	878	596	638	143
Beam Polarization	B = Y = 0.56	B = 0.55 Y = 0.57	B = Y = 0.49			

MC Simulation / Embedding

PYTHIA	Tune	STAR library	Tau Decay
6.4.28	Perugia 0 (320)	P16ig_embed	Tauola 2.7

Event Channel	PYTHIA Cross section	2013 Period 1	2013 Period 2	Run 12	Run 11
W+ -> e+ v	98.5 pb	135.6 K	147.4 K	109.1 K	11.9 K
W+ -> e⁻ v	31.3 pb	43.5 K	47.4 K	34.9 K	3.8 K
W + -> τ+ ν	98.5 pb	135.6 K	147.4 K	109.1 K	11.9 K
W+ -> <i>τ</i> ⁻ v	31.3 pb	43.5 K	47.4 K	34.9 K	3.8 K
Z/γ -> e+ e-	23.9 pb	31.2 K	34.2 K	25.1 K	2.7 K

Analysis

W Selection Algorithm / Cuts

Trigger Level	Event Level	High Pt / high Et candidate e+- level			W / Z candidate level
		High Pt track selection	High Et EMC 2x2 cluster Matching	EMC cluster Isolation	
 Level 0 EMC tower ET > 7.3 GeV 	 Primary Vertex : PPV "rank" > 0 	 # of TPC hits > 15 nHitFrac > 51 % 	• 2x2 ET > 14 GeV	• 2x2 / 4x4 > 95 %	• sign - Pt > 14 GeV
 Level 2 EMC 2x2 cluster ET > 12 GeV 	 Z_vertex < 100 cm 	 Nearest TPC point radius < 90 cm Furthest TPC point radius > 160 cm Pt > 10 GeV 	• ∆r < 7 cm	 2x2 / near Cone > 88% 	 away side ET < 11 GeV

Background Estimation

Electro Weak BG	QCD BG
W -> τ^{\pm} + v estimated using simulation	" Second Endcap " using EEMC
Z -> e++ e- estimated using simulation	"Data- Driven QCD" using data-driven method of scaling QCD BG shape to data

Z invariant mass and A_L

