W^+/W^- cross-section ratio with STAR Run 2017

Jae D. Nam

Temple Univ.

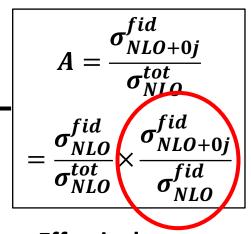
Recap

- Issue present
 - Pythia describes STAR data well after all of the selection/reconstruction + corrections to data rely on Pythia ($\sigma_{data} \sim \sigma_{MC}$)
 - Pythia prediction ~30% lower than NLO calculations
 - → Mismatch between STAR data and NLO
- Potential origins?
 - Detector effects (EMC, TPC, etc.) or coding error that are not accounted for
 - → No significant effects so far
 - Event selection/reconstruction artificially driving Pythia-Data match
 - → ETaway? ETnear? pTbal? that are sensitive to soft effects
- Proposed ways forward
 - NLO+PS frameworks (as was done in LHC)
 - K-factor correction
- Suggestions
 - Looking at Z's
 - Discussions with Werner + Daniel

Studies with Z (in progress)

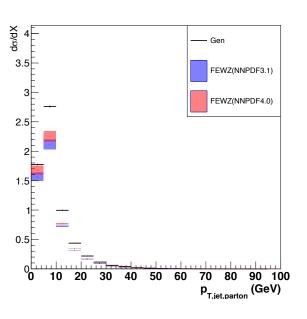
- Strategy
 - Estimate the impact ETaway/pTbal cuts with Z data:
 - Create mock-W data with Z (select 1 electron, blind the other)
 - Obtain $\epsilon_{ETaway}^{Z,data}$ in comparison to $\epsilon_{ETaway}^{W,MC}$ and also pTbalance
 - WIP

Concerns

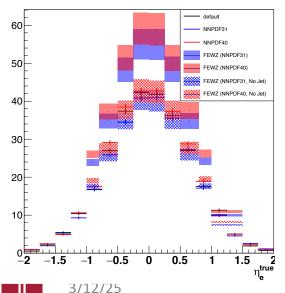

Does ETaway (and perhaps pTbalance) encapsulate all of NLO?

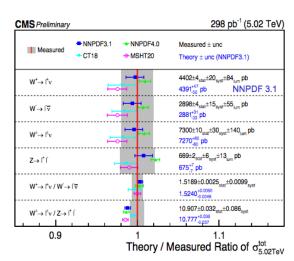
Jae D. Nam

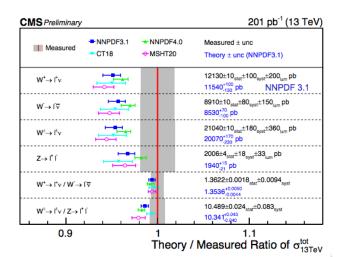
Does the Z sample retain NLO info?


Z's with Run 11-13 vs Run 17

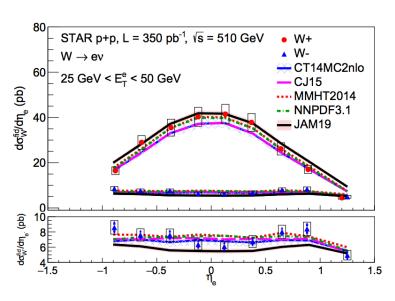
- $\sigma_{Z,data}^{tot} = \sigma_{Z,data}^{fid}/A$, where A = acceptance correction
- $A = \sigma_{Z,FEWZ}^{fid} / \sigma_{Z,FEWZ}^{tot}$
- Based on the corresponding analysis notes,
 - $\sigma_{Z,11-13}^{tot}(8.7 \ pb) \approx \sigma_{Z,17}^{tot}(8.7 \ pb)$
 - $A_{11-13}=0.35$, and $\sigma_{Z,FEWZ}^{fid}$ computed with 0-jet requirement
 - $A_{17} = 0.32$, also with the 0-jet requirement
 - $\sigma_{Z,data}^{tot} \sim \sigma_{Z,FEWZ,NLO}^{tot}$
- $\sigma_{Z,data}^{fid} \approx \sigma_{Z,FEWZ,NLO+0j}^{fid} \ (\approx \sigma_{Z,FEWZ,LO}^{fid})$
- → Same issue as with W!
 - Z with Run 17 suffers from the same issue
 - Perhaps, ETaway, pTbalance aren't the culprits?
 Or isolation cut mimics ETaway cut?
 - → Will wait for mock-W study with Z

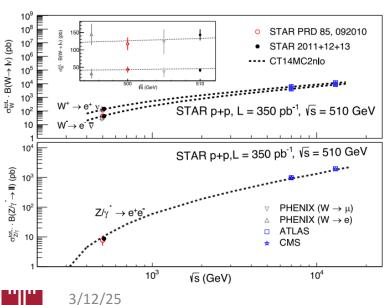



Effectively, k-factor correction


Discussions with Werner and Daniel

- Questions to Werner and Daniel
 - Performance of pQCD describing DY with very soft jets, $p_T > 3.5 \; GeV$?
 - Performance of pQCD in this scale? (describes LHC within 5%)
 - What is the nature of $\sigma^{Pythia} \sim \sigma^{pQCD,LO}$?
- Suggestions?
- Slides uploaded on agenda




Summary

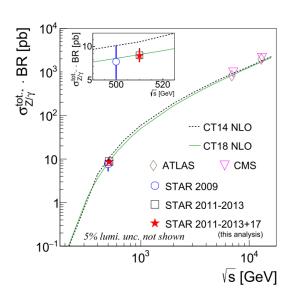
- $\sigma_{data}^{W} \sim \sigma_{MC}^{W} \sim \sigma_{FEWZ,NLO+0,i}^{W} \sim \sigma_{FEWZ,LO}^{W}$
- This is observed throughout Run 11-13,17 and both W and Z
- Previous publications \rightarrow Effective k-factor correction
- WIP: Z-study w/ and w/o isolation (ETnear) selection
- Input from Werner and Daniel (slides uploaded on agenda)
- Proposal
 - Kosher approach = Move away from Pythia to a better event model and re-evaluate W/Z event selection/reconstruction scheme
 - → Unrealistic time scale (Geant4, Root6, jet tuning, etc.)
 - \rightarrow Run 22
 - Discuss in the paper the limitations of the current approach and present fiducial + total cross section + acceptance + k factor (or some combinations of them)

Backup: Previous results (Run 11-13)

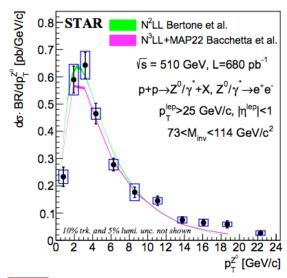
$<\eta_{e^+}>$	$d\sigma_{W^+}^{fid}/d\eta_{e^+}$ (pb)
-0.88	16.5
-0.64	29.0
-0.37	35.5
-0.12	40.3
0.13	41.4
0.37	37.8
0.64	26.1
0.89	17.1
1.20	4.5
$<\eta_{e^-}>$	$d\sigma_{W^-}^{fid}/d\eta_{e^-}$ (pb
-0.89	8.6
-0.89 -0.65	8.6 7.6
-0.65	7.6
-0.65 -0.38	7.6 7.6
-0.65 -0.38 -0.12	7.6 7.6 6.4
-0.65 -0.38 -0.12 0.12	7.6 7.6 6.4 6.1
-0.65 -0.38 -0.12 0.12 0.38	7.6 7.6 6.4 6.1 6.7

$ < y_Z>$	$d\sigma_Z^{fid}/dy_Z~({ m pb})$
-0.74	0.5
-0.41	1.4
0.02	2.7
0.37	2.3
0.71	0.6

A_{W^+}	A_{W^-}	A_Z
0.45 ± 0.01	0.42 ± 0.01	0.35 ± 0.01


	Value(pb)
$\sigma_{W^+}^{fid}$	64.3
$\sigma_{W^-}^{fid}$	17.3
σ_Z^{fid}	3.0

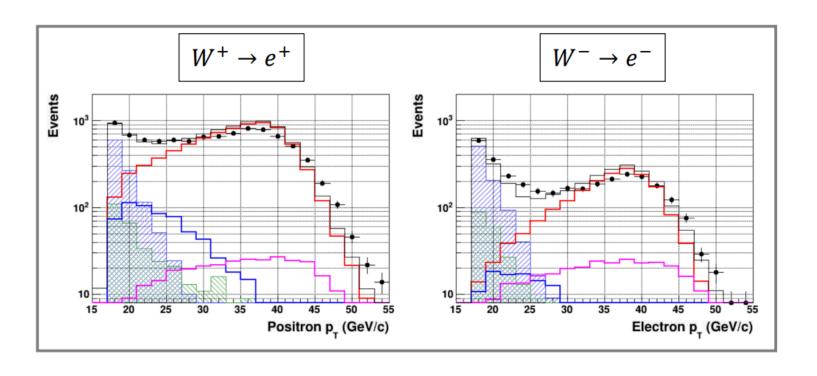
	Cross Section (pb)
$\sigma^{tot}_{W^+} \cdot B (W^+ \to e^+ \nu)$	143.0
$\sigma^{tot}_{W^-}\cdot B\left(W^-\to e^-\bar{\nu}\right)$	41.2
$\sigma_Z^{tot} \cdot B \left(Z o e^+ e^- ight)$	8.7

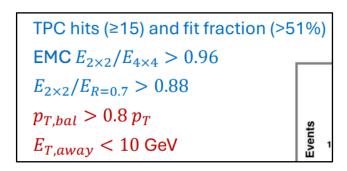


Backup: Previous results (Run 17 Z)

Year	ref	A_{Z^0}	$\sigma^{tot.}_{Z/\gamma^*} \pm stat_{err} \pm sys_{err} \ [pb]$
2009	PRD 85,092010	0.378 ± 0.012	$7.7 \pm 2.1 ^{+0.5}_{-0.9} \pm 1.0 (Lumi)$
2011-13	PRD 103,012001	0.35 ± 0.01	$8.7\pm\ 0.5\pm0.1\ \pm0.9(Eff)$
2011-13+17	this analysis	0.32 ± 0.014	$8.85 \pm 0.39 \pm 0.27 \pm 0.89 (Eff) \pm 0.44 (Lumi)$
2017	this analysis	0.32 ± 0.014	$8.72 \pm 0.31 \pm 0.31 \pm 0.87 (Eff) \pm 0.44 (Lumi)$

 pb^{-1} . Results can be found in Fig. 28. The fiducial cross section integrated with all the p_T bins is $2.72 \pm {\rm (stat)}~0.09 \pm {\rm (sys)}~0.10$. The systematic uncertainty will be explained in the next Section


 $p_T = 0, 1.25, 2.5, 3.75, 5, 7.5, 10, 12.5, 15, 17.5, 20, 25 in GeV/c,$


Table 3: Z^0 p_T spectrum in each p_T bin.

$\langle p_T \rangle [\text{GeV/c}]$	$\frac{d\sigma}{dp_T}$ [pb/GeV/c]	Statistical error [pb/GeV/c]	Systematic error [pb/GeV/c]
0.81	0.23	0.04	0.03
1.93	0.58	0.05	0.07
3.18	0.63	0.05	0.05
4.35	0.46	0.04	0.02
6.28	0.27	0.02	0.02
8.58	0.17	0.02	0.02
11.07	0.14	0.02	0.01
13.77	0.07	0.01	0.01
16.08	0.06	0.01	0.01
18.67	0.06	0.01	0.01
22.30	0.03	0.01	0.01

Backup: Previous results (Run 17 W)

