W^+/W^- cross-section ratio with STAR Run 2017

Jae D. Nam

Temple Univ.

Recap

3. Predictions							
 FEWZ predictions Thanks for screenshots of input cards for FEWZ We are ≈ able to reproduce your theoretical predictions. Note ≈ 35% reduction from 0 jet cut. 							
Channel	Data	FEWZ total (0jet cut)	FEWZ total (no 0jet cut)				
Z	$3.0\pm0.2^{\rm stat}\pm0.0^{\rm sys}\pm0.3^{\rm eff}$	2.64 ± 0.01	3.57 ± 0.01				
W+	$64.3\pm0.7^{\rm stat}\pm0.9^{\rm sys}\pm3.4^{\rm eff}$	67.1 ± 0.1	92.4 ± 0.1				
W-	$17.3\pm0.5^{\rm sys}\pm0.4^{\rm stat}\pm0.9^{\rm eff}$	19.8 ± 0.1	$\textbf{27.0} \pm \textbf{0.1}$				

• ~30% shift in W^+/W^- cross section \rightarrow mis-estimation of **spTbal** cut efficiency with **mock-W** sample (Z data)

- The origin of Z mismatch (FEWZ vs Data) needs to be understood
 - Discussion with Werner and Daniel postponed
- Strategy
 - Independent extraction of Z cross section to identify potential sources of FEWZ-data mismatch
 - Using Run 17 data with (pseudo) Run 13 cuts
 - Results will be reproduced with Run 17 cuts

Selection cuts

Criteria	This study	Run 17	
Trigger	L2BW L2EW	L2BW L2EW	
Vertex N _{vtx}	\geq 3 (data), \geq 1 (MC)		
Vertex $ Z_{vtx} $	< 100 cm	< 100 cm	
Vertex Rank	> 0	> 0	
Track N _{hit,fit}	> 15		
Track $N_{hit,fit}/N_{hit,poss}$	> 0.51		
Track R _{TPC,in}	< 90 cm		
Track R _{TPC,out}	> 160 cm		
Track p_T (presel)	> 10 GeV		
Cluster E _T	> 15 GeV	> 25 GeV	
Cluster $E_T/E_T^{4\times 4}$	> 0.95		
Cluster E_T/E_T^{near}	> 0.88	> 0.90	
Cluster ΔR	< 7 cm		
Candidate $\Delta \phi^{e+e-}$	$>\pi/2$	> 0 (Not Applied)	
Candidate $q \times E_T/p_T$	<i>X</i> < 3	0.4 < X < 1.8	

Truth-Level Kinematic Range

This study	Run 17	
$p_{T,e} > 15 \; GeV$	$p_{T,e} > 25 \; GeV$	
$ \eta_e < 1$	$ \eta_e < 1$	
$70 < M_{inv} < 110 \; GeV$	$73 < M_{inv} < 114 \; GeV$	

- Differences: This study (Run 13 pub) vs Run 17 pub
 - Minor differences in cluster isolation
 - Charge mis-identification needs to be understood
 - Differences in the $p_{T,e}$ range \rightarrow any big impact?

Strategy

- Like-sign pairs are subtracted from data
 - $M^{data} = M^{sig} M^{bgr}$
- MC events distributed into the following groups:
 - **Group 11** = Event reconstructed + **passes** all detector-level selection, and falls **inside** the (truth-level) kinematic range of the measurement
 - **Group 10** = Event reconstructed + **passes** all detector-level selection, but falls **outside** the truth-level range (migration BGR)
 - **Group 01** = Event is not reconstructed/**does not pass** the selection, but falls **inside** the truth-level range (inefficiency)
 - Group 00 = Event correctly rejected
- Truth-level yield from data extracted by

$$N^{data} = N_{11}^{data} + N_{01}^{data} = \frac{N_{11}^{MC} + N_{01}^{MC}}{N_{11}^{MC}} \times A^{-1} \left[\frac{M_{11}^{MC}}{M_{11}^{MC} + M_{10}^{MC}} \times M^{data} \right]$$
$$\rightarrow \frac{d\sigma}{dX} = \frac{1}{L} \times \frac{N_i^{data}}{\Delta X_i}$$

• Simple binwise unfolding performed to convert $M \rightarrow N$

$$A^{-1} \to N_{11}^{MC}/M_{11}^{MC}$$

11 + 10 = What we see 11 + 01 = What we want

= Efficiency cor. \times Unfolding \times Migration BG cor.

Reconstructed Signal

(No mass window cut for all plots)

Reconstructed Signal (Run 17 cuts)

rapidity

- Wider mass peak in data due to BEMC calibration not reproduced well in MC
- Low mass background disappears with Run 17 cuts

Charge mis-identification

- qE_T/p_T cut at $\pm 3 \rightarrow 0.4$ -1.8 cuts out about 16% in data and 4% in MC
- LS background ~20 events (4%) mostly occupying $\sim M_Z$ region, indicating they are likely true Z events with incorrect charge assignment

Charge mis-identification (Run 17 cuts)

- Similar behavior with Run 17 cuts
- LS background really a background?
- qET/pT cut at [0.4, 1.8] justified?

Charge mis-identification

LS Z-mass (this study, Run 13 cuts)

Migration Background (MC)

STAR

Unfolding (MC)

STAR

Unfolding (MC)

STAR

Efficiency

- No significant M_Z bias
- ETnear cut disfavors high pTZ events

 \rightarrow How well does MC capture high-pT suppression? (Integrated pT study suggest < 4% impact)

14

p_T efficiency

This study

15

20

10

• Run 17 pub vs this study

- Similar magnitude, opposite trend
- Perhaps, in previous publications, detector-pT?
- Mechanism behind low pTZ suppression?
- Currently under investigation (can have an impact on the final result)

15

0.4 0.3 0.2 0.1 0

0

5

- Run 17 publication: $\sigma^{fid}_{11-13,17}=2.7\pm0.1~pb$

Channel		Data	FEWZ total	FEWZ total
	Z	$3.0\pm0.2^{\rm stat}\pm0.0^{\rm sys}\pm0.3^{\rm eff}$	2.64 ± 0.01	3.57 ± 0.01
	W^+	$64.3 \pm 0.7^{\tt stat} \pm 0.9^{\tt sys} \pm 3.4^{\tt en}$	67.1 ± 0.1	92.4 ± 0.1
	W-	$17.3\pm0.5^{\rm sys}\pm0.4^{\rm stat}\pm0.9^{\rm eff}$	19.8 ± 0.1	$\textbf{27.0} \pm \textbf{0.1}$

Summary

- Z cross section extracted with Run 17 data + Run 13 cuts
 - Run 17 data with Run 17 cuts on the way
- To be understood better
 - Tighter $q \times E_T / p_T$ cut justified? (~10% effect, not simulated well in MC)
 - Nature of Like Sign background?
 - Efficiency calculation (as a function of pTZtrue or pTZrec)?
- The result within $< 2\sigma$ from FEWZ NLO
 - Perhaps, mismatch between data vs pQCD NLO for Zs not as significant?
- Plans
 - ResBos2 (NLL included) calculation on the way (currently for Ws, do we want for Zs?)
 - W cross section / ratio paper preview request soon with spTbal cor. with Run 11-13 pub summed before this (refer to it as LO cross section)

