StRoot  1
 All Classes Namespaces Files Functions Variables Typedefs Enumerations Enumerator Friends Groups Pages
FragmentationSystems.cc
1 // FragmentationSystems.cc is a part of the PYTHIA event generator.
2 // Copyright (C) 2014 Torbjorn Sjostrand.
3 // PYTHIA is licenced under the GNU GPL version 2, see COPYING for details.
4 // Please respect the MCnet Guidelines, see GUIDELINES for details.
5 
6 // Function definitions (not found in the header) for the
7 // ColConfig, StringRegion and StringSystem classes.
8 
9 #include "Pythia8/FragmentationSystems.h"
10 
11 namespace Pythia8 {
12 
13 //==========================================================================
14 
15 // The ColConfig class.
16 
17 //--------------------------------------------------------------------------
18 
19 // Constants: could be changed here if desired, but normally should not.
20 // These are of technical nature, as described for each.
21 
22 // A typical u/d constituent mass.
23 const double ColConfig::CONSTITUENTMASS = 0.325;
24 
25 //--------------------------------------------------------------------------
26 
27 // Initialize and save pointers.
28 
29 void ColConfig::init(Info* infoPtrIn, Settings& settings,
30  StringFlav* flavSelPtrIn) {
31 
32  // Save pointers.
33  infoPtr = infoPtrIn;
34  flavSelPtr = flavSelPtrIn;
35 
36  // Joining of nearby partons along the string.
37  mJoin = settings.parm("FragmentationSystems:mJoin");
38 
39  // For consistency ensure that mJoin is bigger than in StringRegion.
40  mJoin = max( mJoin, 2. * StringRegion::MJOIN);
41 
42  // Simplification of q q q junction topology to quark - diquark one.
43  mJoinJunction = settings.parm("FragmentationSystems:mJoinJunction");
44  mStringMin = settings.parm("HadronLevel:mStringMin");
45 
46 }
47 
48 //--------------------------------------------------------------------------
49 
50 // Insert a new colour singlet system in ascending mass order.
51 // Calculate its properties. Join nearby partons.
52 
53 bool ColConfig::insert( vector<int>& iPartonIn, Event& event) {
54 
55  // Find momentum and invariant mass of system, minus endpoint masses.
56  Vec4 pSumIn;
57  double mSumIn = 0.;
58  bool hasJunctionIn = false;
59  int nJunctionLegs = 0;
60  for (int i = 0; i < int(iPartonIn.size()); ++i) {
61  if (iPartonIn[i] < 0) {
62  hasJunctionIn = true;
63  ++nJunctionLegs;
64  } else {
65  pSumIn += event[ iPartonIn[i] ].p();
66  if (!event[ iPartonIn[i] ].isGluon())
67  mSumIn += event[ iPartonIn[i] ].constituentMass();
68  }
69  }
70  double massIn = pSumIn.mCalc();
71  double massExcessIn = massIn - mSumIn;
72 
73  // Check for rare triple- and higher junction systems (like J-Jbar-J)
74  if (nJunctionLegs >= 5) {
75  infoPtr->errorMsg("Error in ColConfig::insert: "
76  "junction topology too complicated; too many junction legs");
77  return false;
78  }
79  // Check that junction systems have at least three legs.
80  else if (nJunctionLegs > 0 && nJunctionLegs <= 2) {
81  infoPtr->errorMsg("Error in ColConfig::insert: "
82  "junction topology inconsistent; too few junction legs");
83  return false;
84  }
85 
86  // Check that momenta do not contain not-a-number.
87  if (abs(massExcessIn) >= 0.);
88  else {
89  infoPtr->errorMsg("Error in ColConfig::insert: "
90  "not-a-number system mass");
91  return false;
92  }
93 
94  // Identify closed gluon loop. Assign "endpoint" masses as light quarks.
95  bool isClosedIn = (iPartonIn[0] >= 0 && event[ iPartonIn[0] ].col() != 0
96  && event[ iPartonIn[0] ].acol() != 0 );
97  if (isClosedIn) massExcessIn -= 2. * CONSTITUENTMASS;
98 
99  // For junction topology: join two nearby legs into a diquark.
100  if (hasJunctionIn && joinJunction( iPartonIn, event, massExcessIn))
101  hasJunctionIn = false;
102 
103  // Loop while > 2 partons left and hope of finding joining pair.
104  bool hasJoined = true;
105  while (hasJoined && iPartonIn.size() > 2) {
106 
107  // Look for the pair of neighbour partons (along string) with
108  // the smallest invariant mass (subtracting quark masses).
109  int iJoinMin = -1;
110  double mJoinMin = 2. * mJoin;
111  int nSize = iPartonIn.size();
112  int nPair = (isClosedIn) ? nSize : nSize - 1;
113  for (int i = 0; i < nPair; ++i) {
114  // Keep three legs of junction separate.
115  if (iPartonIn[i] < 0 || iPartonIn[(i + 1)%nSize] < 0) continue;
116  Particle& parton1 = event[ iPartonIn[i] ];
117  Particle& parton2 = event[ iPartonIn[(i + 1)%nSize] ];
118  // Avoid joining non-partons, e.g. gluino/squark for R-hadron.
119  if (!parton1.isParton() || !parton2.isParton()) continue;
120  Vec4 pSumNow;
121  pSumNow += (parton1.isGluon()) ? 0.5 * parton1.p() : parton1.p();
122  pSumNow += (parton2.isGluon()) ? 0.5 * parton2.p() : parton2.p();
123  double mJoinNow = pSumNow.mCalc();
124  if (!parton1.isGluon()) mJoinNow -= parton1.m();
125  if (!parton2.isGluon()) mJoinNow -= parton2.m();
126  if (mJoinNow < mJoinMin) { iJoinMin = i; mJoinMin = mJoinNow; }
127  }
128 
129  // If sufficiently nearby then join into one new parton.
130  // Note: error sensitivity to mJoin indicates unstable precedure??
131  hasJoined = false;
132  if (mJoinMin < mJoin) {
133  int iJoin1 = iPartonIn[iJoinMin];
134  int iJoin2 = iPartonIn[(iJoinMin + 1)%nSize];
135  int idNew = (event[iJoin1].isGluon()) ? event[iJoin2].id()
136  : event[iJoin1].id();
137  int iMoth1 = min(iJoin1, iJoin2);
138  int iMoth2 = max(iJoin1, iJoin2);
139  // When g + q -> q flip to ensure that mother1 = q.
140  if (event[iMoth1].id() == 21 && event[iMoth2].id() != 21)
141  swap( iMoth1, iMoth2);
142  int colNew = event[iJoin1].col();
143  int acolNew = event[iJoin2].acol();
144  if (colNew == acolNew) {
145  colNew = event[iJoin2].col();
146  acolNew = event[iJoin1].acol();
147  }
148  Vec4 pNew = event[iJoin1].p() + event[iJoin2].p();
149 
150  // Append joined parton to event record.
151  int iNew = event.append( idNew, 73, iMoth1, iMoth2, 0, 0,
152  colNew, acolNew, pNew, pNew.mCalc() );
153 
154  // Displaced lifetime/vertex; mothers should be same but prefer quark.
155  int iVtx = (event[iJoin1].isGluon()) ? iJoin2 : iJoin1;
156  event[iNew].tau( event[iVtx].tau() );
157  if (event[iVtx].hasVertex()) event[iNew].vProd( event[iVtx].vProd() );
158 
159  // Mark joined partons and reduce remaining system.
160  event[iJoin1].statusNeg();
161  event[iJoin2].statusNeg();
162  event[iJoin1].daughter1(iNew);
163  event[iJoin2].daughter1(iNew);
164  if (iJoinMin == nSize - 1) iPartonIn[0] = iNew;
165  else {
166  iPartonIn[iJoinMin] = iNew;
167  for (int i = iJoinMin + 1; i < nSize - 1; ++i)
168  iPartonIn[i] = iPartonIn[i + 1];
169  }
170  iPartonIn.pop_back();
171 
172  // If joined,then loopback to look for more.
173  hasJoined = true;
174  }
175  }
176 
177  // Store new colour singlet system at the end.
178  singlets.push_back( ColSinglet(iPartonIn, pSumIn, massIn,
179  massExcessIn, hasJunctionIn, isClosedIn) );
180 
181  // Now move around, so that smallest mass excesses come first.
182  int iInsert = singlets.size() - 1;
183  for (int iSub = singlets.size() - 2; iSub >= 0; --iSub) {
184  if (massExcessIn > singlets[iSub].massExcess) break;
185  singlets[iSub + 1] = singlets[iSub];
186  iInsert = iSub;
187  }
188  if (iInsert < int(singlets.size()) - 1) singlets[iInsert] =
189  ColSinglet(iPartonIn, pSumIn, massIn, massExcessIn,
190  hasJunctionIn, isClosedIn);
191 
192  // Done.
193  return true;
194 }
195 
196 //--------------------------------------------------------------------------
197 
198 // Join two legs of junction to a diquark for small invariant masses.
199 // Note: for junction system, iPartonIn points to structure
200 // (-code0) g...g.q0 (-code1) g...g.q1 (-code2) g...g.q2
201 
202 bool ColConfig::joinJunction( vector<int>& iPartonIn, Event& event,
203  double massExcessIn) {
204 
205  // Find four-momentum and endpoint quarks and masses on the three legs.
206  Vec4 pLeg[3];
207  double mLeg[3] = { 0., 0., 0.};
208  int idAbsLeg[3];
209  int leg = -1;
210  for (int i = 0; i < int(iPartonIn.size()); ++ i) {
211  if (iPartonIn[i] < 0) ++leg;
212  else {
213  pLeg[leg] += event[ iPartonIn[i] ].p();
214  mLeg[leg] = event[ iPartonIn[i] ].m();
215  idAbsLeg[leg] = event[ iPartonIn[i] ].idAbs();
216  }
217  }
218 
219  // Calculate invariant mass of three pairs, minus endpoint masses.
220  double m01 = (pLeg[0] + pLeg[1]).mCalc() - mLeg[0] - mLeg[1];
221  double m02 = (pLeg[0] + pLeg[2]).mCalc() - mLeg[0] - mLeg[2];
222  double m12 = (pLeg[1] + pLeg[2]).mCalc() - mLeg[1] - mLeg[2];
223 
224  // Find lowest-mass pair not involving diquark.
225  double mMin = mJoinJunction + 1.;
226  int legA = -1;
227  int legB = -1;
228  if (m01 < mMin && idAbsLeg[0] < 9 && idAbsLeg[1] < 9) {
229  mMin = m01;
230  legA = 0;
231  legB = 1;
232  }
233  if (m02 < mMin && idAbsLeg[0] < 9 && idAbsLeg[2] < 9) {
234  mMin = m02;
235  legA = 0;
236  legB = 2;
237  }
238  if (m12 < mMin && idAbsLeg[1] < 9 && idAbsLeg[2] < 9) {
239  mMin = m12;
240  legA = 1;
241  legB = 2;
242  }
243  int legC = 3 - legA - legB;
244 
245  // Nothing to do if no two legs have small invariant mass, and
246  // system as a whole is above MiniStringFragmentation threshold.
247  if (legA == -1 || (mMin > mJoinJunction && massExcessIn > mStringMin))
248  return false;
249 
250  // Construct separate index arrays for the three legs.
251  vector<int> iLegA, iLegB, iLegC;
252  leg = -1;
253  for (int i = 0; i < int(iPartonIn.size()); ++ i) {
254  if (iPartonIn[i] < 0) ++leg;
255  else if( leg == legA) iLegA.push_back( iPartonIn[i] );
256  else if( leg == legB) iLegB.push_back( iPartonIn[i] );
257  else if( leg == legC) iLegC.push_back( iPartonIn[i] );
258  }
259 
260  // First step: successively combine any gluons on the two legs.
261  // (Presumably overkill; not likely to be (m)any extra gluons.)
262  // (Do as successive binary joinings, so only need two mothers.)
263  for (leg = 0; leg < 2; ++leg) {
264  vector<int>& iLegNow = (leg == 0) ? iLegA : iLegB;
265  int sizeNow = iLegNow.size();
266  for (int i = sizeNow - 2; i >= 0; --i) {
267  int iQ = iLegNow.back();
268  int iG = iLegNow[i];
269  int colNew = (event[iQ].id() > 0) ? event[iG].col() : 0;
270  int acolNew = (event[iQ].id() < 0) ? event[iG].acol() : 0;
271  Vec4 pNew = event[iQ].p() + event[iG].p();
272  int iNew = event.append( event[iQ].id(), 74, iQ, iG, 0, 0,
273  colNew, acolNew, pNew, pNew.mCalc() );
274 
275  // Mark joined partons and update iLeg end.
276  event[iQ].statusNeg();
277  event[iG].statusNeg();
278  event[iQ].daughter1(iNew);
279  event[iG].daughter1(iNew);
280  iLegNow.back() = iNew;
281  }
282  }
283 
284  // Second step: combine two quarks into a diquark.
285  int iQA = iLegA.back();
286  int iQB = iLegB.back();
287  int idQA = event[iQA].id();
288  int idQB = event[iQB].id();
289  int idNew = flavSelPtr->makeDiquark( idQA, idQB );
290  // Diquark colour is opposite to parton closest to junction on third leg.
291  int colNew = (idNew > 0) ? 0 : event[ iLegC[0] ].acol();
292  int acolNew = (idNew > 0) ? event[ iLegC[0] ].col() : 0;
293  Vec4 pNew = pLeg[legA] + pLeg[legB];
294  int iNew = event.append( idNew, 74, min(iQA, iQB), max( iQA, iQB),
295  0, 0, colNew, acolNew, pNew, pNew.mCalc() );
296 
297  // Mark joined partons and reduce remaining system.
298  event[iQA].statusNeg();
299  event[iQB].statusNeg();
300  event[iQA].daughter1(iNew);
301  event[iQB].daughter1(iNew);
302  iPartonIn.resize(0);
303  iPartonIn.push_back( iNew);
304  for (int i = 0; i < int(iLegC.size()) ; ++i)
305  iPartonIn.push_back( iLegC[i]);
306 
307  // Remove junction from event record list, identifying by colour.
308  int iJun = -1;
309  for (int i = 0; i < event.sizeJunction(); ++i)
310  for (int j = 0; j < 3; ++ j)
311  if ( event.colJunction(i,j) == max(colNew, acolNew) ) iJun = i;
312  if (iJun >= 0) event.eraseJunction(iJun);
313 
314  // Done, having eliminated junction.
315  return true;
316 
317 }
318 
319 //--------------------------------------------------------------------------
320 
321 // Collect all partons of singlet to be consecutively ordered.
322 
323 void ColConfig::collect(int iSub, Event& event, bool skipTrivial) {
324 
325  // Check that all partons have positive energy.
326  for (int i = 0; i < singlets[iSub].size(); ++i) {
327  int iNow = singlets[iSub].iParton[i];
328  if (iNow > 0 && event[iNow].e() < 0.)
329  infoPtr->errorMsg("Warning in ColConfig::collect: "
330  "negative-energy parton encountered");
331  }
332 
333  // Partons may already have been collected, e.g. at ministring collapse.
334  if (singlets[iSub].isCollected) return;
335  singlets[iSub].isCollected = true;
336 
337  // Check if partons already "by chance" happen to be ordered.
338  bool inOrder = true;
339  for (int i = 0; i < singlets[iSub].size() - 1; ++i) {
340  int iFirst = singlets[iSub].iParton[i];
341  if (iFirst < 0) continue;
342  int iSecond = singlets[iSub].iParton[i + 1];
343  if (iSecond < 0) iSecond = singlets[iSub].iParton[i + 2];
344  if (iSecond != iFirst + 1) { inOrder = false; break;}
345  }
346 
347  // Normally done if in order, but sometimes may need to copy anyway.
348  if (inOrder && skipTrivial) return;
349 
350  // Copy down system. Update current partons.
351  for (int i = 0; i < singlets[iSub].size(); ++i) {
352  int iOld = singlets[iSub].iParton[i];
353  if (iOld < 0) continue;
354  int iNew = event.copy(iOld, 71);
355  singlets[iSub].iParton[i] = iNew;
356  }
357 
358  // Done.
359 }
360 
361 //--------------------------------------------------------------------------
362 
363 // Find to which singlet system a particle belongs.
364 
365 int ColConfig::findSinglet(int i) {
366 
367  // Loop through all systems and all members in them.
368  for (int iSub = 0; iSub < int(singlets.size()); ++iSub)
369  for (int iMem = 0; iMem < singlets[iSub].size(); ++iMem)
370  if (singlets[iSub].iParton[iMem] == i) return iSub;
371 
372  // Done without having found particle; return -1 = error code.
373  return -1;
374 }
375 
376 //--------------------------------------------------------------------------
377 
378 // List all currently identified singlets.
379 
380 void ColConfig::list(ostream& os) const {
381 
382  // Header. Loop over all individual singlets.
383  os << "\n -------- Colour Singlet Systems Listing -------------------\n";
384  for (int iSub = 0; iSub < int(singlets.size()); ++iSub) {
385 
386  // List all partons belonging to each singlet.
387  os << " singlet " << iSub << " contains " ;
388  for (int i = 0; i < singlets[iSub].size(); ++i)
389  os << singlets[iSub].iParton[i] << " ";
390  os << "\n";
391 
392  // Done.
393  }
394 }
395 
396 //==========================================================================
397 
398 // The StringRegion class.
399 
400 // Currently a number of simplifications, in particular ??
401 // 1) No popcorn baryon production.
402 // 2) Simplified treatment of pT in stepping and joining.
403 
404 //--------------------------------------------------------------------------
405 
406 // Constants: could be changed here if desired, but normally should not.
407 // These are of technical nature, as described for each.
408 
409 // If a string region is smaller thsan this it is assumed empty.
410 const double StringRegion::MJOIN = 0.1;
411 
412 // Avoid division by zero.
413 const double StringRegion::TINY = 1e-20;
414 
415 //--------------------------------------------------------------------------
416 
417 // Set up four-vectors for longitudinal and transverse directions.
418 
419 void StringRegion::setUp(Vec4 p1, Vec4 p2, bool isMassless) {
420 
421  // Simple case: the two incoming four-vectors guaranteed massless.
422  if (isMassless) {
423 
424  // Calculate w2, minimum value. Lightcone directions = input.
425  w2 = 2. * (p1 * p2);
426  if (w2 < MJOIN*MJOIN) {isSetUp = true; isEmpty = true; return;}
427  pPos = p1;
428  pNeg = p2;
429 
430  // Else allow possibility of masses for incoming partons (also gluons!).
431  } else {
432 
433  // Generic four-momentum combinations.
434  double m1Sq = p1 * p1;
435  double m2Sq = p2 * p2;
436  double p1p2 = p1 * p2;
437  w2 = m1Sq + 2. * p1p2 + m2Sq;
438  double rootSq = pow2(p1p2) - m1Sq * m2Sq;
439 
440  // If crazy kinematics (should not happen!) modify energies.
441  if (w2 <= 0. || rootSq <= 0.) {
442  if (m1Sq < 0.) m1Sq = 0.;
443  p1.e( sqrt(m1Sq + p1.pAbs2()) );
444  if (m2Sq < 0.) m2Sq = 0.;
445  p2.e( sqrt(m2Sq + p2.pAbs2()) );
446  p1p2 = p1 * p2;
447  w2 = m1Sq + 2. * p1p2 + m2Sq;
448  rootSq = pow2(p1p2) - m1Sq * m2Sq;
449  }
450 
451  // If still small invariant mass then empty region (e.g. in gg system).
452  if (w2 < MJOIN*MJOIN) {isSetUp = true; isEmpty = true; return;}
453 
454  // Find two lightconelike longitudinal four-vector directions.
455  double root = sqrt( max(TINY, rootSq) );
456  double k1 = 0.5 * ( (m2Sq + p1p2) / root - 1.);
457  double k2 = 0.5 * ( (m1Sq + p1p2) / root - 1.);
458  pPos = (1. + k1) * p1 - k2 * p2;
459  pNeg = (1. + k2) * p2 - k1 * p1;
460  }
461 
462  // Find two spacelike transverse four-vector directions.
463  // Begin by picking two sensible trial directions.
464  Vec4 eDiff = pPos / pPos.e() - pNeg / pNeg.e();
465  double eDx = pow2( eDiff.px() );
466  double eDy = pow2( eDiff.py() );
467  double eDz = pow2( eDiff.pz() );
468  if (eDx < min(eDy, eDz)) {
469  eX = Vec4( 1., 0., 0., 0.);
470  eY = (eDy < eDz) ? Vec4( 0., 1., 0., 0.) : Vec4( 0., 0., 1., 0.);
471  } else if (eDy < eDz) {
472  eX = Vec4( 0., 1., 0., 0.);
473  eY = (eDx < eDz) ? Vec4( 1., 0., 0., 0.) : Vec4( 0., 0., 1., 0.);
474  } else {
475  eX = Vec4( 0., 0., 1., 0.);
476  eY = (eDx < eDy) ? Vec4( 1., 0., 0., 0.) : Vec4( 0., 1., 0., 0.);
477  }
478 
479  // Then construct orthogonal linear combinations.
480  double pPosNeg = pPos * pNeg;
481  double kXPos = eX * pPos / pPosNeg;
482  double kXNeg = eX * pNeg / pPosNeg;
483  double kXX = 1. / sqrt( 1. + 2. * kXPos * kXNeg * pPosNeg );
484  double kYPos = eY * pPos / pPosNeg;
485  double kYNeg = eY * pNeg / pPosNeg;
486  double kYX = kXX * (kXPos * kYNeg + kXNeg * kYPos) * pPosNeg;
487  double kYY = 1. / sqrt(1. + 2. * kYPos * kYNeg * pPosNeg - pow2(kYX));
488  eX = kXX * (eX - kXNeg * pPos - kXPos * pNeg);
489  eY = kYY * (eY - kYNeg * pPos - kYPos * pNeg - kYX * eX);
490 
491  // Done.
492  isSetUp = true;
493  isEmpty = false;
494 
495 }
496 
497 //--------------------------------------------------------------------------
498 
499 // Project a four-momentum onto (x+, x-, px, py).
500 
501 void StringRegion::project(Vec4 pIn) {
502 
503  // Perform projections by four-vector multiplication.
504  xPosProj = 2. * (pIn * pNeg) / w2;
505  xNegProj = 2. * (pIn * pPos) / w2;
506  pxProj = - (pIn * eX);
507  pyProj = - (pIn * eY);
508 
509 }
510 
511 //==========================================================================
512 
513 // The StringSystem class.
514 
515 //--------------------------------------------------------------------------
516 
517 // Set up system from parton list.
518 
519 void StringSystem::setUp(vector<int>& iSys, Event& event) {
520 
521  // Figure out how big the system is. (Closed gluon loops?)
522  sizePartons = iSys.size();
523  sizeStrings = sizePartons - 1;
524  sizeRegions = (sizeStrings * (sizeStrings + 1)) / 2;
525  indxReg = 2 * sizeStrings + 1;
526  iMax = sizeStrings - 1;
527 
528  // Reserve space for the required number of regions.
529  system.clear();
530  system.resize(sizeRegions);
531 
532  // Set up the lowest-lying regions.
533  for (int i = 0; i < sizeStrings; ++i) {
534  Vec4 p1 = event[ iSys[i] ].p();
535  if ( event[ iSys[i] ].isGluon() ) p1 *= 0.5;
536  Vec4 p2 = event[ iSys[i+1] ].p();
537  if ( event[ iSys[i+1] ].isGluon() ) p2 *= 0.5;
538  system[ iReg(i, iMax - i) ].setUp( p1, p2, false);
539  }
540 
541 }
542 
543 //==========================================================================
544 
545 } // end namespace Pythia8
Definition: AgUStep.h:26