StRoot
1
|
Public Member Functions | |
StPmdNeuNet () | |
Constructor with no parameter . Purpose ?? | |
StPmdNeuNet (const Text_t *name, Int_t nInput=5, const Text_t *hidden="6:7:8", Int_t nOutput=4) | |
Constructor. | |
void | setDiscMaker (StPmdDiscriminatorMaker *) |
virtual void | SetKernel (Int_t nInput, const Text_t *hidden, Int_t nOutput) |
virtual void | SetLearnParam (Double_t learnParam=0.2, Double_t fse=0., Double_t mu=0.) |
virtual void | SetInitParam (Float_t lowerInitWeight=-1., Float_t upperInitWeight=1.) |
Sets the initialisation parameters : max and min weights. | |
virtual void | Init () |
virtual void | PrintS () |
prints structure of network on screen | |
virtual void | Mix () |
virtual Double_t | TrainOneCycle () |
virtual void | ResetCycles () |
virtual void | Export (const Text_t *fileName="exportNN.dat") |
virtual void | Import (const Text_t *fileName="exportNN.dat") |
virtual void | SetUseBiases (Bool_t trueForUse=1) |
virtual void | SetRandomSeed (UInt_t seed=0) |
virtual UInt_t | GetRandomSeed () |
virtual Bool_t | IsTrained () |
virtual Int_t | GetNTrainCycles () |
virtual Int_t | GetNTrainEvents () |
virtual void | SetNTrainEvents (Int_t nevt) |
virtual Int_t | GetNValidEvents () |
virtual void | SetArraySize (Int_t s=0) |
virtual void | FillArray (Int_t, Int_t, Float_t) |
virtual void | Fill (Int_t iev=0) |
virtual Float_t * | GetInputAdr () |
virtual void | SetInput (Float_t v, Int_t i) |
virtual Int_t | GetNInput () |
virtual Int_t | GetNOutput () |
virtual Float_t | GetOutput (Int_t unit=0) |
virtual Float_t * | GetOutputAdr () |
virtual Float_t * | GetTeachAdr () |
virtual void | SetTeach (Float_t v, Int_t i) |
virtual void | fillArrayOut (Float_t v, Int_t i, Int_t l) |
virtual Double_t | GoThrough () |
virtual Float_t | GetSumO () |
void | PrintTrain () |
virtual Double_t | Valid () |
virtual void | TrainNCycles (Int_t nCycles=10) |
virtual Int_t | GetNWeights () |
virtual Double_t | ApplyWeights (Float_t *, Float_t *) |
Protected Member Functions | |
virtual Double_t | Sigmoide (Double_t x) |
virtual Double_t | SigPrim (Double_t x) |
Protected Attributes | |
StPmdDiscriminatorMaker * | m_DiscMaker |
Definition at line 54 of file StPmdNeuNet.h.
|
virtual |
one loop on internal events = one cycle. takes each event from internal array in an order fixed by an array ( fEventsList ). It is necessary to call the method Mix() before each call to this function in order to change the presentation order. The learning is done by this function. The private variable fNTrainCycles is incremented.
Definition at line 771 of file StPmdNeuNet.cxx.
|
virtual |
Put the structure in a file WARNING : the weights and biases are stored with 4 digits in decimal part. Learning parameters are not stored
Definition at line 564 of file StPmdNeuNet.cxx.
|
virtual |
Get the structure from a file WARNING : the weights and biases are stored with 4 digits in decimal part. Learning parameteres are not stored.
Definition at line 606 of file StPmdNeuNet.cxx.
|
virtual |
initialisation of biases and weights. the init parameters can be changed by : SetInitParam(Float_t lowerInitWeight, Float_t upperInitWeight) The default is -1 and 1
Definition at line 271 of file StPmdNeuNet.cxx.
|
virtual |
mix the events before learning. VERY IMPORTANT. is has to be used before TrainOneCycle() , IT IS NOT used by TrainOneCycle() , you have to do the call yourself
Definition at line 656 of file StPmdNeuNet.cxx.
Referenced by TrainNCycles().
|
virtual |
Sets the learning parameters : the main learning parameter is around 0.2 (in ]0,1]) fse is for flat spot elimination, with values in [0,0.25], often 0.1 mu is for backprop momentum, values in [0,1]
Definition at line 222 of file StPmdNeuNet.cxx.
|
virtual |
method to train on N cycles, with mixing and plot of errors on the controller conte.
Definition at line 540 of file StPmdNeuNet.cxx.
References Mix(), TrainOneCycle(), and Valid().
|
virtual |
one loop on internal events = one cycle. takes each event from internal array in an order fixed by an array ( fEventsList ). It is necessary to call the method Mix() before each call to this function in order to change the presentation order. The learning is done by this function. The private variable fNTrainCycles is incremented.
Definition at line 477 of file StPmdNeuNet.cxx.
Referenced by TrainNCycles().
|
virtual |
one loop on valid events. takes each event from validation tree. the events are passed trough the kernel, and a mean output error is computed.
Definition at line 518 of file StPmdNeuNet.cxx.
Referenced by TrainNCycles().